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ABSTRACT

We study a family of infinite games with imperfect information introduced

by B. Model for two players that alternately remove and add points to a

finite set. We investigate the existence of imperfect information strategies

for the remover for different ambient cardinalities. We also study a variant

of a game of D. Gale introduced by Scheepers and Weiss.

1. Introduction

In [3] Boris Model introduced the following game on X = ℜ (the set of real

numbers). The Model game MG(X, m, ℓ) is defined with two additional param-

eters m, ℓ ∈ ω with 0 < ℓ < m. There are two players which we call Adder and

Remover. A play of this game consists of ω moves played alternately by the two

players. A finite set X0 ⊂ X of cardinality m is presented first to the players.

Remover then chooses a set R0 ⊂ X0 of cardinality ℓ, and Adder completes

X0 \R0 by choosing ℓ points from X and adding them to X0 \R0. Thus produc-

ing X1 ⊂ X of cardinality m again. In general, the two players define a sequence
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〈Xi | i ∈ ω〉 with Xi ∈ [X ]m (where [X ]m denotes the collection of all subsets of

X of cardinality m). In its k-th move (for k ≥ 0), Remover chooses Rk ⊂ Xk of

size ℓ, and Adder then defines Xk+1 ∈ [X ]m so that Xk \ Rk ⊂ Xk+1. The re-

sulting ω-sequence of sets P = 〈Xk, Rk | k ∈ ω〉 is called a play, and sometimes

we refer to a finite initial sequence 〈Xk, Rk | k < k0〉 as a partial (initial) play.

Let P = 〈Xk, Rk | k ∈ ω〉 be a play. The set of fixed points of P is defined by

fixed(P ) =
⋃

n∈ω

⋂

k≥n

Xk \ Rk.

In simple words, x ∈ fixed(P ) iff for some n ∈ ω x is in Xn and is never removed

in any of the subsequent moves of Remover.

The aim of Remover in this game is to make fixed(P ) as small as possible,

and the aim of Adder is to make it as large as possible.

It is clear that the game can be defined and played on any set X not just the

reals. Model was mostly interested in X = ℜ, but we found that investigating

the possibilities of X = ℵn reveals some interesting questions and puts the

results about ℜ in context.

The game is trivial if perfect information is assumed for Remover. In this

case Remover can ensure that fixed(P ) = ∅ for any play P . The game is also of

lesser interest if the moves of Remover depend only on the position Xn (without

knowledge of n). The point of Model in introducing these games is to study

games with partial information in which one of the players (Remover in this

game) knows the stage number but does not recall the previous moves. That

is, in deciding Rn, Remover knows Xn and n, but not the sequence of Xi’s or

the points removed so far. So a strategy for Remover in the game MG(X, m, ℓ)

is a “choice” function σ: [X ]m × ω → [X ]ℓ such that σ(A, k) ⊂ A for every

A ∈ [X ]m and k ∈ ω. A play of the game according to strategy σ is a play

in which Remover always responds with Rk = σ(Xk, k). When the strategy

is known, we refer to the sequence 〈Xk | k ∈ ω〉 as a play. That is, the sets

removed, Rk, are omitted since they can be reconstructed as Rk = σ(Xk, k).

Model investigated the number c = c(ℜ, m, ℓ) which is the minimal number

such that for some strategy σ for Remover, in any play P of MG(ℜ, m, ℓ),

|fixed(P )| ≤ c.

The following interesting results of Model [4] motivate our present work ([4]

contains additional results).

1. If X is uncountable and m ∈ ω, then for any strategy σ for Remover in

the game MG(X, m, 1) there is a play P with fixed(P ) ≥ 1. So the remover has

no strategy to ensure emptiness of fixed points if he is allowed to remove single
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points in each move. Model asked if a similar result holds when the number of

points removed is ℓ > 1.

2. If the continuum hypothesis (CH) is assumed, then, for every m ∈ ω,

Remover has a strategy in the game MG(ℜ, m, 1) that ensures |fixed(P )| ≤ 1

in every play of the game. Model asked about the role of CH in this result.

We have the corresponding results.

1. If X is uncountable and ℓ < m ∈ ω, then for any strategy σ for Remover

in the game MG(X, m, ℓ) there is a play P with fixed(P ) ≥ 1. So the remover

has no strategy to ensure emptiness of fixed points even if he is allowed to

remove ℓ points.

2. The CH result of Model is in fact about ω1. Generalizing this to arbitrary

n ∈ ω, we prove for X = ℵn that there is a strategy for Remover in the game

MG(ℵn, m, 1) to ensure that the number of fixed points in any play never exceeds

n (this results uses no assumptions beyond ZFC).

3. We prove that c(ω2, 3, 1) = 1 is equivalent to the negation of the contin-

uum hypothesis.

Model’s games resemble in spirit to a game invented independently by D. Gale

which is also a game with limited memory. This game was introduced in [1]

where K. Ciesielski and R. Laver answer several questions of Gale. Further

investigation of variant games were published in a series of three papers by

Scheepers, and Scheepers and Weiss. The third paper ([7]) makes a conjecture

which we answer positively in section 5.

We conclude with questions for further investigation in section 6.

Acknowledgement: The authors would like to thank Boris Model for pa-

tiently explaining to them his results and open questions.

2. How to remove points from ℵn

Theorem 2.1: For every m ∈ ω and 1 ≤ ℓ < m, for every n ∈ ω,

c(ωn, m, ℓ) ≤ n.

That is, there is a strategy for Remover which ensures that there is no play in

MG(ωn, m, ℓ) with n + 1 fixed points.

The proof is by induction on n. For n = 0, the games are played on ω0 = ω,

and Remover’s strategy for MG(ω, m, ℓ) is trivial. Enumerate ω in a sequence



208 U. ABRAHAM AND R. SCHIPPERUS Isr. J. Math.

〈an | n ∈ ω〉 so that each x ∈ ω appears infinitely often. For its s-th move,

Remover defines Rs = σω(A, s) as some subset X ⊆ A of cardinality ℓ so that

as ∈ X if as ∈ A. Clearly, in any play P = 〈Ai, Ri | i ∈ ω〉 played with σω,

fixed(P ) = ∅.

The following property will be needed later on to crank the induction.

(1)

For every x ∈ ω there exists k so that, if A0, . . . , Ak−1 is any
sequence of length k, with Ai ∈ [ω]m such that

1. x ∈ A0, and

2. Ai \ σω(Ai, i) ⊆ Ai+1 for every 0 ≤ i ≤ k − 2,

then
x ∈

⋃

0≤i<k

σω(Ai, i).

In simpler terms, this says that for any x there is k so that segments of length

k of plays cannot contain x continuously. In order to prove that any play has

an empty set of fixed points, we must consider arbitrary a ∈ ω and the part

〈Ai, Ri | i ≥ a〉 of the play. The statement that we need for this is a slight

strengthening of (1) namely that for every x and a there exists k such that if

Ai, for a ≤ i < a + k, form a partial play then x ∈
⋃

a≤i<a+k σω(Ai, i). This

follows from the assumption that every x ∈ ω is enumerated infinitely often.

This strategy σω for the games MG(ω0, m, ℓ) is uniform: it does not depend

on the value of m (but ℓ is needed to determine the size of the set returned).

For n > 0 we will need strategies σm,ℓ
ωn

that take the values of m and ℓ into

account. For uniformity of expression, however, it is convenient to define σm,ℓ
ω

as σω restricted to sets of size m (and returning sets of size ℓ).

The following overview is designed to motivate the proof for ωn where n ≥ 1.

The strategy of Remover is to work in cycles which get longer and longer.

Presented with Xs ∈ [ωn]m for its s-th move, Remover looks at the maximal

element α of Xs and considers the set Xs ∩ α of m − 1 elements. Since α has

cardinality ≤ ωn−1 there exists a strategy for MG(α, m − 1, ℓ) obtained by the

induction hypothesis, and transferred from ωn−1 onto α. This strategy tells

Remover which subset of Xs ∩ α to remove. Remover continues for a while to

use the maximal element of the set presented, and to employ the transferred

strategy from the lower cardinal. (Remark however that the maximal elements

of the sets Xs presented need not be the same all the way.) Then Remover

enters the second phase of this cycle, and considers the second largest member

of X presented to him. It is this second largest member α that is used as a

pivot to determine which transferred strategy to employ over Xs ∩ α. (It is a
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strategy for MG(α, m−2, ℓ).) Remover plays this second phase for a while, and

then moves to the third phase etc. Remover continues to lower its pivot point

and plays transferred strategies on partial plays, until he reaches the (m− ℓ)-th

phase, and then he just removes the first ℓ ordinals in Xs all at once. Remover

then finishes its cycle, and restarts another cycle choosing again the maximal

element as pivot. Now however each phase is played longer.

There is an obvious problem with this description. Consider the first phase,

for example, when the pivot is the largest element of X . This pivot ordinal may

change in the next move as a result of the ordinals added by Adder. It may

increase or stay the same, but it will never decrease while Remover is in the same

phase. Anyhow the transferred strategies can change, and the game of Remover

becomes incoherent. What saves the day is a certain stability property: if there

is a fixed ordinal in a cycle then there must be an honest partial play of some

phase with a fixed strategy.

We continue now with some definitions that will be used in the proof. Assume

that strategies σm,ℓ
α for Remover have been defined on every α ≤ ωn−1 for all

games MG(α, m, ℓ) where 1 ≤ ℓ ≤ m. (In case ℓ = m, Remover just removes all

points at once.) For every ordinal α ∈ ωn\ωn−1 fix a one-to-one correspondence

between α and ωn−1, and transfer the assumed strategy for Remover in the

game MG(ωn−1, m, ℓ) to the game MG(α, m, ℓ). This transferred strategy on α

is denoted σm,ℓ
α . So the strategies σm,ℓ

α are defined for every α < ωn, and we

want to define σ = σm,ℓ
ωn

on ωn as well.

Fix integers 1 ≤ ℓ < m < ω. A cycle number is an integer q ≥ 1. A phase

number is an integer p such that ℓ ≤ p < m (so there are m−ℓ phases). A step

number, or move number, (for cycle q) is an integer 0 ≤ r < q. Remover

works in cycles, 1, 2, . . . , q, . . ., and for each cycle q he goes through phases m−1

down to ℓ. At each phase p he executes q steps, 0, . . . , q − 1. For every cycle q,

phase p, and step r we calculate the stage number associated with the r-th step

in the p-th phase of the q-th cycle:

stage(q, p, r) = (m − ℓ)q(q − 1)/2 + (m − p − 1)q + r.

We explain this formula. Each cycle contains m− ℓ phases. Each phase in cycle

q contains q steps, and hence cycle q contains q(m − ℓ) steps. The first cycle,

for q = 1, contains (m − ℓ) steps (one per phase), the second cycle contains

2(m − ℓ) steps etc. Hence (m − ℓ)q(q − 1)/2 is the number of steps in the

first q − 1 cycles. The number (m − p − 1)q is the number of steps related

to phases (m − 1), (m − 2), . . . , p + 1, and r is the number of steps associated
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with phase p. The important thing about stage is that it is one-to-one and onto

ω and that q1 ≤ q2, p2 ≤ p1, r1 ≤ r2 imply stage(q1, p1, r1) ≤ stage(q2, p2, r2).

The interval [stage(q, m − 1, 0), . . . , stage(q, ℓ, q − 1)] is called the q-th cycle.

The interval [stage(q, p, 0), . . . , stage(q, p, q − 1)] of q numbers is called the p-th

phase of cycle q. Its members are called p-th phase numbers or indices.

The following lemma is obvious.

Lemma 2.2: For every a ∈ ω there is k ∈ ω such that the interval [a, a + k]

contains a cycle. So for every a and q0 there is k so that the interval [a, a + k]

contains the q-th cycle for some q ≥ q0.

For every A ∈ [ωn]m we let A(0) < A(1) · · ·A(m − 1) be the increasing

enumeration of the members of A. So |A ∩ A(k)| = k. If x ∈ A, then λ(x, A) =

|x ∩ A| is the place of x in A. So A(p) = x iff λ(x, A) = p.

For every stage s ∈ ω there are: a unique cycle q, phase p, and step number

r so that s = stage(q, p, r). To define the strategy σ = σm,ℓ
ωn

for Remover we

define for A ∈ [ωn]m and s ∈ ω the set σ(A, s) ∈ [A]ℓ as follows: Find first a

cycle q, phase p, and step number r so that s = stage(q, p, r). Let a = A(p) be

the p-th member of A. We say that a is the “pivot” for A at stage s. Consider

the strategy τ = σp,ℓ
a in MG(a, p, ℓ), and apply it to A ∩ a with move r. That

is, define

σ(A, s) = τ(A ∩ a, r).

The strategies σm,ℓ
ωn

are thus defined by induction on n for all m and

1 ≤ ℓ ≤ m, as are the strategies σm,ℓ
γ for every n ∈ ω and γ ∈ ωn.

We still need some preliminary definitions and lemmas before we can start

the proof of Theorem 2.1. Consider a partial initial play P = 〈Xs | 0 ≤ s < s0〉

in MG(ωn, m, ℓ) in which Remover uses its strategy σ = σm,ℓ
ωn

just defined. We

make the following definitions.

1. Suppose that all indices of the q-th cycle,

C = [stage(q, m − 1, 0), . . . , stage(q, ℓ, q − 1)]

are below s0. Then C is called the q-th cycle of P , and 〈Xs | s ∈ C〉 is called

the play of the q-th cycle of P . An ordinal x is said to be stable in the q-th

cycle of P if x is in each Xs for s ∈ C and is never removed. That is, if i0 is the

first index in C then x ∈ Xi0 \
⋃

i∈C σ(Xi, i).

2. Suppose that S = [stage(q, p, 0), . . . , stage(q, p, q − 1)], the p-th phase of

cycle q, is such that all indices of S are below s0. The sequence 〈Xs | s ∈ S〉 is
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called the play of P of phase p in cycle q. We say that this play is “honest” iff,

for some a, Xs(p) = a for every s ∈ S.

3. Suppose that i and i + 1 both belong to the same phase, p, in C. We say

that the pair (Xi, Xi+1) is honest iff Xi(p) = Xi+1(p) = a.

The main lemma needed is the following stability property.

Lemma 2.3: Let P = 〈Xs | 0 ≤ s < s0〉 be a partial play in which Remover

plays σ = σm,ℓ
ωn

. Let Ri = σ(Xi, i) and Di = Xi+1\(Xi\Ri) be the sets removed

and added. Suppose that the q-th cycle C is included in s0 (so that Xs is defined

for every s in C).

1. If i belongs to phase p in C and i+1 < s0, then Xi(p) ≤ Xi+1(p). If both

of i and i + 1 are in phase p of C, then the pair (Xi, Xi+1) is honest iff

Di ⊆ Xi(p).

2. Suppose that i and i + 1 belong to different phases in cycle C, say p and

p − 1 respectively. Then Xi+1(p − 1) ≥ max Xi(p) ∩ (Xi \ Ri).

3. Suppose that x is a stable point of C. Then there exists a phase p in C

that is an honest play with pivot x.

Proof:

1. Say a = Xi(p). The definition of σ is such that Ri ⊆ a. That is,

Remover takes all his points below a, but Adder can add also above a.

Thus the position of a can only decrease: λ(a, Xi) ≥ λ(a, Xi+1). Hence

Xi(p) ≤ Xi+1(p). Equality Xi(p) = Xi+1(p) holds exactly if Di ⊆ a.

2. Suppose that i is in phase p, and i+1 in the following phase p− 1. So i is

the last stage of phase p, and i+1 is the first of phase p−1. Say a = Xi(p).

Let x ∈ a∩ (Xi \Ri) be any member of Xi below a that was not removed

(since a = Xi(p) and p > ℓ there is such x). We have seen in the first

item that λ(a, Xi+1) ≤ λ(a, Xi) = p. Hence λ(x, Xi+1) < λ(a, Xi+1) ≤ p

implies that λ(x, Xi+1) < p. Equivalently, Xi+1(p − 1) ≥ x.

Since x was an arbitrary member of a∩ (Xi \Ri), we can take it maximal

and get Xi+1(p − 1) ≥ maxXi(p) ∩ (Xi \ Ri).

3. This is the main item of the lemma. Suppose that x is stable in C, but

there is no honest phase with x as a fixed pivot. We prove by induction

on p = m − 1, . . . , ℓ that

(a) for every i in phase p of C, Xi(p) ≥ x, and

(b) for the last stage i in phase p of C, Xi(p) > x.

Suppose the claim holds for all phases greater than p and we prove it for

p. Let i be the first index of phase p in C. In case p = m − 1, Xi(p) ≥ x
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is obvious since Xi(p) = maxXi. In case p < m− 1, p + 1 is the previous

phase and i − 1 is the last index of phase p + 1. So Xi−1(p + 1) > x by

the inductive assumption (item b) and as we proved that

Xi(p) ≥ maxXi−1(p + 1) ∩ (Xi−1 \ Ri−1)

Xi(p) ≥ x follows. Since

Xi(p) ≤ Xi+1(p) ≤ · · · ≤ Xi+q−1(p)

by item 1 of the lemma (where i + q − 1 is the last index in phase p), we

have only two possibilities. Either Xi+q−1(p) = x in which case phase p

is honest with pivot x, or else Xi+q−1(p) > x.

But now a contradiction is derived when we reach the last phase p = ℓ

of C. Because if j is the last index of this phase, then Xj(ℓ) > x by our

inductive claim (item b). But then all ℓ points of Xj ∩Xj(ℓ) are removed

at stage j, and thus x is not stable in C.

Now that Lemma 2.3 is proven, we can complete the proof of Theorem 2.1.

We will prove by induction on n < ω the following claim for every 0 < ℓ < m

and σ = σm,ℓ
ωn

:

(2)

For every F ∈ [ωn]n+1 and a ∈ ω there exists k ∈ ω so that
if Ai ∈ [ωn]m for a ≤ i < a + k satisfy

1. F ⊆ Aa, and

2. Ai \ σ(Ai, i) ⊆ Ai+1 for every a ≤ i ≤ a + k − 2,

then
F ∩

⋃

a≤i<a+k

σ(Ai, i) 6= ∅.

This claim implies the theorem immediately. For n = 0 and σ = σω0
, it was

proved in (1). Observe that if the claim holds for σωn
then it holds for every σα

where ωn ≤ α < ωn+1. Observe also that if the claim holds, then it obviously

holds for every F ∈ [ωn]r where r ≥ n + 1.

Assume the claim for n − 1 (and a = 0, this suffices for the induction). We

want to prove the claim for σ = σm,ℓ
ωn

. Consider F ∈ [ωn]n+1; let x0 = maxF

and F0 = x0 ∩ F . Since x0 < ωn we have the inductive assumption for games

played on x0, and so there is some k0 < ω so that the claim holds for F0 ∈ [x0]
n

and for the strategies σm′,ℓ
x0

(where m′ ≤ m). That is, if Bi ∈ [x0]
m′

, where

m′ ≤ m, are such that B0, . . . , Bk−1 is a partial play according to σm′,ℓ
x0

and

F0 ⊆ B0 then F0 ∩
⋃

i<k σm′,ℓ
x0

(Bi, i) 6= ∅. Suppose that a ∈ ω is given. There is
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k ∈ ω such that the interval [a, a + k) contains the q-th cycle for some q ≥ k0.

Let C be that cycle. We will prove that k witnesses (2). So let Ai ∈ [ωn]m for

a ≤ i < a + k be given as in (2). If x0 is not stable in C, then (2) obviously

holds, and hence we may assume that x0 is stable in that part of the given play.

By the main item of Lemma 2.3, there is a phase p in C which is an honest play

with pivot x0. Let [p0, . . . , p0 + q) be that phase, which contains q steps since it

is in the q-th cycle. If F0 6⊆ Ap0
then (2) clearly holds. So we may assume that

F0 ⊆ Ap0
. The stability of x0 as a pivot, implies that the sets Bi = Ap0+i ∩ x0

for i < q describe a play according to the strategy σm′ℓ
x0

(where m′ = |B0|). Now

(2) follows from the inductive assumption.

3. Remover cannot ensure an empty set

In this section we prove for every ℓ < m in ω that c(ω1, m, ℓ) = 1. We

know by the previous section that c(ω1, m, ℓ) ≤ 1, and it suffices to show that

c(ω1, m, ℓ) 6= 0 in order to conclude that c(ω1, m, ℓ) = 1.

Theorem 3.1: Assume that 1 ≤ ℓ < m. For every strategy σ for Remover in

the game MG(ω1, m, ℓ), there is a play P such that |fixed(P )| ≥ 1.

Proof: Let σ be a strategy for Remover in MG(ω1, m, ℓ). So for every B ∈ [ω1]
m

and n ∈ ω, σ(B, n) ∈ [B]ℓ. An ordinal δ ∈ ω1 is defined to be good iff for

every A1 ⊂ δ such that |A1| = m − ℓ − 1 and for every n ≥ 1 there is a set

D ∈ [ω1 \ (A1 ∪ {δ})]ℓ such that if we define R = σ(A1 ∪ {δ}∪D, n) then δ 6∈ R

and D \ R ⊂ δ. (In this case, if we define A2 = (A1 ∪ D) \ R, then A2 ⊂ δ is of

size m − ℓ − 1, just like A1.)

Lemma 3.2: The set of good ordinals contains a closed unbounded subset of

ω1.

Proof: Suppose for the sake of a contradiction that there is a stationary set

S ⊆ ω1 of ordinals that are not good. For every δ ∈ S there are a set A1(δ) ∈

[δ]m−ℓ−1 and a natural number n(δ) ≥ 1 such that for every D ∈ [ω1 \ (A1(δ)∪

{δ})]ℓ the set R = σ(A1(δ) ∪ {δ} ∪ D, n(δ)) does not satisfy the requirements

for goodness in that either δ ∈ F or else D \ R 6⊂ δ.

By Fodor’s lemma, there is a stationary set of ordinals S′ ⊆ S such that

n = n(δ) and A1 = A1(δ) are fixed for all δ ∈ S′. Let δ0, . . . , δℓ be a set of

ℓ+1 ordinals from S′. Consider A = A1∪{δ0, . . . , δℓ}. And define R = σ(A, n).

Then R has cardinality ℓ and so there is some δi not in R. Let δ be the highest
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indexed δi not in R. Then the set D = {δ0, . . . , δn} \ {δ} shows that δ 6∈ S′,

which is a contradiction.

We can conclude now the proof of our theorem, and prove for every X0 ∈ [ω1]
m

that there is a play P = 〈Xi | i ∈ ω〉 in which Remover employs its strategy σ

and |fixed(P )| ≥ 1.

Let L = {δ1, . . . , δℓ} be a set of ℓ good ordinals, all above X0. The first

move of Remover produces R0 = σ(X0, 0), to which Adder responds with X1 =

(X0 \R0)∪L. There are two cases now which determine the responses of Adder.

Case 1: Suppose that for every n ≥ 1, σ(X1, n) = L. In this case, Remover

always removes L and Adder always puts L back and the resulting play is such

that Xi = X1 for all i ≥ 1. Clearly the set of fixed points is X0.

Case 2: Not Case 1. That is, for some n ≥ 1, L \ σ(X1, n) 6= ∅. Let 1 ≤ n

be the first such n, and let δi ∈ L \ σ(X1, n) be with maximal possible index i.

Then Adder plays with L in its first n moves until Xn = X1 is produced such

that δi = max{Xn \ σ(Xn, n)}. From now on Adder can use the goodness of

δi in defining Xm so that δi ∈ Xm is never removed and δi = max(Xm \ Rm).

This is clearly possible: after Remover subtracts Rm, Adder considers A1 =

Xm \ (Rm ∪{δi}) and finds D ∈ [ω1 \ (A1 ∪{δ})]ℓ by the goodness of δ. Then it

defines Xm+1 = A1∪{δ}∪D. Since δi is never removed, the theorem is proved.

4. CH is equivalent to c(ω2, 3, 1) = 2

Our aim is to prove the theorem stated in the title of this section. There are two

directions in the proof, and we first assume the continuum hypothesis (CH). We

will use the Erdős–Rado theorem which states that (2ℵ0)+ → (ω1)
2
ω. That is, for

every function f : [(2ℵ0)+]2 → ω there exists an homogeneous set of order-type

ω1 (a standard reference to infinitary combinatorics is [2]). If CH is assumed,

we have ω2 → (ω1)
2
ω (namely replace (2ℵ0)+ by ω2).

Consider now the game MG(ω2, 3, 1) and let σ be a strategy for Remover. So

for every A ∈ [ω2]
3 and n ∈ ω, σ(A, n) ∈ A (formally it is a singleton, but we

refer to it as an ordinal). We will produce a play P such that |fixed(P )| = 2.

Since c(ω2, 3, 1) ≤ 2 is trivial, we conclude that c(ω2, 3, 1) = 2 if CH holds.

Define an unordered pair a, b ∈ [ω2]
2 to be good iff for every n ∈ ω there is

an ordinal c ∈ ω2 \ {a, b} such that {c} = σ({a, b, c}, n). If there exists a good

pair {a, b}, then Adder can find a play in which {a, b} is the set of fixed points,

and this proves the first direction of our theorem. So assume that no pair is

good, and for every {a, b} ∈ [ω2]
2 there is n ∈ ω so that for every c ∈ ω2 \ {a, b}
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σ({a, b, c}, n) ∈ {a, b}. Define f({a, b}) to be such a number n. By Erdős–Rado

theorem there is an infinite homogeneous set, but clearly there cannot even be

a homogeneous set of size 3.

Now we prove the other direction, namely that ¬CH implies that c(ω2, 3, 1) =

1. The argument is a variant of B. Model’s proof of his theorem that c(ℜ, 3, 1) ≤

1. It is a well-known observation that there is a function g: [ℜ]2 → ω with no

homogeneous triangle. That is, no set {a, b, c} of three elements so that for

some n, g({x, y}) = n for all x 6= y in {a, b, c}. (To see this, let {si | i ∈ ω}

enumerate all rational numbers. Then define g({a, b}) = i iff i is the first index

for which si is strictly between a and b.)

If 2ℵ0 ≥ ℵ2 then we may take our function g to be defined on [ω2]
2. So

g: [ω2]
2 → ω has no homogeneous triangles. This can be employed in defining

a strategy for Remover in MG(ω2, 3, 1) as follows. Fix an enumeration of ω,

{ni | i ∈ ω} in which For every A ∈ [ω2]
3 and n ∈ ω each number is enumerated

infinitely often. Let A ∈ [ω2]
3 be given at stage i of the play. Consider the color

ni. There are three cases:

1. There is no pair {x, y} ⊂ A with g({x, y}) = ni. Then define σ(A, i) as

any ordinal in A.

2. There is a single pair {x, y} ⊂ A with g({x, y}) = ni. Then define

σ(A, i) ∈ {x, y} (any value will do).

3. There are two pairs {x, y} and {y, z} taken from A with g({x, y}) =

g({y, z}) = ni. Observe that g({x, z}) 6= ni since there is no homogeneous

triangle. Hence the pairs {x, y}, {y, z} are uniquely determined and we define

σ(A, i) = y (that is, y is the common point of the two pairs with color ni).

This strategy ensures that there are never two fixed points. For suppose {a, b} ∈

[ω2]
2, and consider a play in which Remover uses this strategy σ. For any stage

k ∈ ω we will find a later move in which one of a and b is removed (if present

in Xn). Indeed at stage i with ni = g({a, b}), we ensured that σ(A, i) ∈ {a, b}.

5. On a game of Scheepers and Weiss

The game of D. Gale investigated by Ciesielski and Laver [1] resembles those of

Model (they were found independently). We call the two player in Gale’s games

Adder and Coverer. Let X be an infinite ambient set. In its n-th move (n ≥ 0),

Adder chooses a finite subset Xn of X and Coverer chooses a single point xn

from X (or rather from X1 ∪ · · · ∪ Xn \ {x1, . . . , xn−1}). The aim of Coverer is
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to achieve the equality ⋃

n∈ω

Xn = {xi | i ∈ ω}

in which case he wins the play. If even one point is not covered, Adder wins.

Scheepers and Weiss formulated in [7] a variant SG(ω1, k + 1, k) of Gale’s

game and conjectured that Coverer does not have a remainder winning strategy

for the game. They proved this conjecture for k = 1, 2, 3 and found additional

results that strengthen the plausibility of their conjecture. The aim of this

section is to prove that conjecture completely, for every k.

Fix some integer k ≥ 1. The game SG(ω1, k + 1, k) is defined as follows. The

ambient set is X = ω1. In its first move, (indexed by 0), Adder chooses a set

O0 ∈ [ω1]
k+1, and Coverer chooses T0 ⊂ O0 of cardinality k. In its n-th move

(n ≥ 1) Adder chooses a set On ⊂ ω1 so that

1. On−1 ⊂ On, and

2. |On \ On−1| ≤ k + 1.

Then Coverer chooses (in its n-th move) a set Tn ⊂ On \
⋃

0≤j<n Tj such that

|Tn| ≤ k. The play is won by Coverer iff
⋃

n∈ω On =
⋃

n∈ω Tn.

A remainder strategy for Coverer is a function σ defined on the finite subsets

A of ω1 such that σ(A) ⊆ A and |σ(A)| ≤ k. A play {On, Tn | n ∈ ω}

is played according to remainder strategy σ iff O0 ∈ [X ]k+1, On−1 ⊂ On,

|On \ On−1| ≤ k + 1, T0 = σ(X0) and Tn = σ(On \
⋃

0≤j<n Tj).

The following was conjectured by Scheepers and Weiss [7].

Theorem 5.1: For every k ≥ 1 and for every remainder strategy for Coverer in

the game SG(ω1, k+1, k) there exists a play {On, Tn | n ∈ ω} played according to

σ in which Adder wins. In fact, except for the first set O0 which has cardinality

k + 1, we can let Adder add only k ordinals at a time (that is On \ On−1 has

cardinality k).

Proof: An ordinal δ ∈ ω1 is defined to be good iff for every finite A ⊂ δ + 1

such that δ = maxA (so δ ∈ A) and for every finite set V ⊂ ω1 such that A ⊆ V

there exists a set B ⊂ ω1 \ V such that |B| = k and

(3) δ = max{(A ∪ B) \ σ(A ∪ B)}.

Lemma 5.2: The set of good ordinals in ω1 contains a closed unbounded set.

Proof: Suppose that there exists a stationary set S ⊆ ω1 of ordinals that are

not good. So for every δ ∈ S there exists a finite set A(δ) ⊂ δ + 1 such that
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δ = max A(δ), and there exists a finite set V (δ) such that A(δ) ⊆ V (δ) ⊂ ω1,

and

(4) for every B ∈ [ω1 \ V (δ)]k, (3) does not hold.

Using Fodor’s theorem, we can shrink S and obtain a stationary subset S′ ⊆ S

such that, for some fixed A0 and V0, A0 = A(δ)∩ δ and V0 = V (δ)∩ δ for every

δ ∈ S′. So A(δ) = A0 ∪{δ} for every δ ∈ S′. Shrinking S′ even further, we may

assume that if δ1 < δ2 are in S′ then V (δ1) ⊂ δ2.

Now let L be any set of k + 1 ordinals from S′. Define T = σ(A0 ∪ L).

Since T has at most k ordinals, L \ T 6= ∅, and we let δ = max(L \ T ). Now

A(δ) = A0 ∪ {δ}, and if we define B = L \ {δ}, then B is disjoint to V (δ) and

δ = max[A(δ) ∪ B \ σ(A(δ) ∪ B)] which contradicts (4).

Now we describe how Adder plays against the strategy σ of Coverer in the

SG(ω1, k + 1, k) game. The first set O0 is any set of size k + 1 of good ordinals.

Coverer then plays T0 = σ(O0) of size at most k. Let δ be the maximal ordinal

in O0 \ T0. The play that Adder develops is such that δ is never covered, and

hence Coverer fails. The sets On played by Adder in its n-th stage, and the

sets Rn = T0 ∪ · · · ∪ Tn that were removed by Coverer in its moves up-to and

including stage n are such that δ = max{On \ Rn}.

Let us see that Adder can keep holding this inductive property and thus

ensuring that δ is never covered by Coverer. Suppose the n-th moves On and

Tn were played by Adder and Coverer. Then Adder defines A = On \ Rn,

and V = On. By assumption δ = maxA. Since δ is good, there exists a set

B ∈ [ω1 \ V ]k such that

(5) δ = max{A ∪ B \ σ(A ∪ B)}.

Then Adder plays with On+1 = On ∪ B. Coverer responds with Tn+1 =

σ(On+1 \ Rn), and we must check that δ = maxOn+1 \ Rn+1. But this fol-

lows from (5) since A ∪ B = On+1 \ Rn.

6. Conclusion

We do not know the answers to the following questions which seem interesting

to us.

1. As we have said, Model proved with CH that for every m ∈ ω,

c(ℜ, m, 1) ≤ 1. Namely there is a strategy for Remover which leaves no pair of

ordinals fixed. We observed that CH is not needed if the ambient set is ω1, and
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extended this result to ωn. Yet, one may insist on playing with reals and ask

whether c(ℜ, m, 1) ≤ 1 can be proved without the aid of CH. Model [4] proved

this for m = 3 (we reported a variant of the proof in section 4), and the simplest

open question is to prove that c(ℜ, 4, 1) ≤ 1.

2. For every n ∈ ω we have a strategy for Remover that ensures no more

than n fixed points in any play of MG(ωn, m, 1). That is, c(ωn, m, 1) ≤ n. When

is it true that c(ωn, m, 1) = n? This may depend on m: for m = 3 we have

proved in section 4 that c(ω2, 3, 1) = 2 is equivalent to CH, but what about

m = 4?

3. Model also considered games in which Adder is allowed to add more points

than Remover can remove. For example, consider a game on ω1 in which Adder

can add two ordinals in a move, and Remover can take only one. A strategy

for Remover is a choice function, that is a function f defined on the non-empty

finite subsets of ω1 such that f(A) ∈ A. The proof of section 3 can be adapted

to show that Adder can always secure at least one fixed point, but we suspect

that he can do better. We conjecture that Adder can secure infinitely many

fixed points. Is it true that for every order type α < ω1 Adder can secure a set

of fixed points of order type at least α?

4. In proving the conjecture of Scheepers and Weiss we showed that for every

strategy for Coverer in SG(ω1, k + 1, k) there is a play in which Coverer fails by

omitting one point. Can Adder force a failure in which at least two points are

never removed? At the end of their paper [7], Scheepers and Weiss remark that

it is probably true that for every strategy for Coverer in SG(ω1, k + 1, k) (for

any k ∈ ω) and for every α ∈ ω1 there is a play in which the order-type of the

points not taken is at least α.
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